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Nonlinear System Guidance in the Presence of Transmission

Zero Dynamics

G. Meyer, L. R. Hunt, and R. Su

Ames Research Center

Summary

An iterative procedure is proposed for computing the commanded state trajectories and controls

that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through

a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the

transmission zero effects nulled out. Then the "steady state" solution of the perturbation model with the

transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both

time domain and frequency domain methods are presented for computing the steady state solutions of

the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of

linear and nonlinear examples.

1 Introduction

This report presents a procedure for guiding a possibly nonlinear system through a schedule of

control points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The

ATC provides a sequence of waypoints through which the aircraft trajectory must pass. The waypoints

typically specify time, position, and velocity. The time separation between the waypoints is normally

greater than one minute. The flight vehicle management system (FVMS) on board the aircraft is

normally aware of at least one waypoint in advance. The FVMS planner provides a sequence of control

points between the waypoints so that the aircraft will satisfy additional, vehicle specific constraints. The

guidance command generator transforms the schedule of control points into reference state trajectory

segments that are flyable and that pass through the control points. These reference trajectories are

solutions to the system state equation. The rest of the system is a model follower in which the regulator

maintains the aircraft state close to the reference state. Thus, the structure of the complete system is

hierarchical: at the top is the ATC; at the bottom are actuators. There is a progressive filling in of the

detail as one moves down the hierarchy. In the present report we are concerned with algorithms for

transforming the control point schedule into reference state trajectories.

If the system to be controlled is approximately in pure feedback form, that is, if the zero dynamics

are negligible, then system inversion provides an effective procedure for the generation of guidance

commands (refs. 1 and 2). In their prize paper (ref. 3), Isidori and Byrnes solve the guidance problem

in the presence of zero dynamics. However, a solution to a nonlinear partial differential equation must

be obtained, and that is not always practical. Furthermore, the commanded output is restricted to outputs

of a relaxing autonomous exosystem, whereas we are interested in the case where the output may have

discontinuous higher derivatives at the control points. Paden, Chen, and Devasia (refs. 4--6) made a



major advanceby finding an iterative solution that avoidsthe partial differential equationand admits
discontinuitiesat control points.

The solution describedin the presentpapermay be viewedas a modificationof the iteration in
reference6. Our procedureconsistsof two nestediterations.Thecomputationis initialized by the pure
feedbacksolution in which the zerodynamicsarenulled out. Then the error resulting from the zero
dynamicsis removed(outer iteration)by solving a sequenceof linearproblems.Each linear problem
is solvedby meansof the linear versionof the iteration in reference6. The introductionof the outer
iteration allows one to control the effectsof nonlinearitieson the convergenceof the inner iteration.
The effectivenessof the approachis illustratedby meansof applicationsto linear, time-varying, and
nonlinearsystems.
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2 System Guidance

The purpose of the guidance subsystem is to generate reference trajectories that will comply with

the specifications of a higher-level planner and with the capabilities of the controlled process. Thus,

for example, consider a simplified model of the interaction between the ATC and the aircraft under

its influence. For simplicity, let both the ATC and all the aircraft be fully automatic. A model of the

combined process is shown in figure 1. Based on the available airspace and goals and capabilities of the

various aircraft, the ATC provides to each aircraft a sequence of waypoints. The FVMS of each aircraft

develops a plan for passing through the assigned waypoints. Then the planner provides a control point

table (CPT) of control points that specify the desired conditions at particular times, as well as the aircraft

configuration in which the segments are to be flown. The command synthesizer connects the control

points by functions of time from a standard set, such as polynomials. The result is the commanded

motion of the output Yc and the required time variation of the configuration variables p, such as flaps and

landing gear. The guidance generator transforms the desired motion and configuration change (Yc, P)

into the complete guidance state trajectory and control (xa, ug). The plant regulator transforms the

tracking error :_P - x o into a corrective action u e, which is combined with u9 to produce the plant

control u p . The primary virtue of this model-follower structure is that the regulator is responsible only

for controlling the uncertainty arising from disturbance and modeling errors, and not for shaping the

plant response. It may be noted that the overall structure is hierarchical with regard to the horizon

width and plan refinement and stability. ATC is at the top with the widest horizon, slowest-changing

plan, and coarsest specification. The FVMS planner has a narrower horizon and a faster-changing, more

refined plan. The guidance generator fills in a lot of detail, and the regulator is at the bottom: it is

purely reactive, with the narrowest horizon, and it produces the most refined commands. The ATC plan

is stable for minutes, the guidance for seconds, and the regulator for milliseconds, changing at every

sample (e.g., 20 msec). In the present report, we are concerned with design of the guidance generator,

that is, with the computation of (x g, ug).

A high-level description of the guidance problem is straightforward. We are given the system state

equation and the output map,

= f(x, u,p)
V = h(x,p) (2-1)

where the state x E R n, the control u C R m, the parameter p C R k, and the output y _ R m. We

Waypolnts

ATC

Status

r Aircraft

• FVMS

%

J

f
Planner

cpt

ur

Processl

! !

Figure I. A model of the interaction between ATC and aircraft.
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are also given the evolution of the parameter{p(t), t E 7"} and the desired evolution of the output

{yc(t), t E T}. The problem is to find a control {ua(t), t E 7-} and the corresponding solution

{xa(t), t E 7-} of the state equation so that

h[:cg(t),p(t)] = yc(t) (2-2)

Furthermore, the solution (x9, ug) should not reach values that are excessive for the task at hand,

and the guidance state xg must be everywhere continuous. It may be noted that since the initial condition

x g is not given, the guidance problem is not explicitly an initial value problem.

The following very simple example illustrates the salient features of the guidance problem and the

solution approach that will be pursued in the present report.

Example 2--1

Consider a scalar second-order system,

that is supposed to track

5:1 = X 2

a_2=u

y = --x I + x2

yc(t) = sin wt

(2-3)

(2-4)

Obtain a differential equation describing the zero dynamics. Note that

there is a nonminimum phase zero at s = 1.

_. - z = sin wt

ZI-_Z

x2=z

Consider the initial value problem with the initial condition to be

selected later,

_. - z = sin wt

z(O)= zo

(2-5)

(2-6)

The solution consists of the sum of the homogeneous and particular

parts:

Z=Zh +Z p (2-7)

where

t
zp(t) = asin(t + O)

(2-8)
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andwhere (a, 0) are the gain and phase of the transfer function of the

zero dynamics,

ae jO -= (jco- 1) -1 (2-9)

Consequently,

z(t) -= ce t + a sin(t + 0)

We choose z(0) = zp(O) in order to obtain c = 0 and thus null the

homogeneous part. The guidance trajectory is then given by the par-

ticular solution,

Xlp(t) = a sin(wt + O)

X2p(t ) = aco cos(wt q-- 0)

up(t) = -aw 2 sin(wt + O)

(2-10)

(2-11)

The following points should be emphasized:

• In general, the reference Yc as well as the guidance solution may persist indefinitely.

• The reference Yc can be expected to be differentiable at the control points only a small number

of times, but the guidance state should be continuous everywhere.

• In the constant linear case, the guidance solution is the particular solution that can be obtained

by means of the (possibly unstable) transfer function of the zero dynamics.

• We wish to avoid the computation of the guidance solution by numerical integration of the

(possibly unstable) zero dynamics.

• Whereas regulation algorithms must be causal, guidance, being a planning activity, can have

noncausal computations.

In the present report we generalize this approach to time-varying and nonlinear systems. The

specific case of aircraft guidance is considered, but it should be clear that the methods are applicable

to a wider class of systems.





3 Aircraft Model

A rigid body model of an aircraft can be described by the following set of equations:

rr = Vr

= c fl (urn,up,ui,  bTb)+ge3

Cbr = S(Wbrb)Cbr

(3-1)

where rr,Vr C R 3 are the runway coordinates of the aircraft center of mass position and velocity,

respectively; Cbr is the direction cosine matrix locating body-fixed axes with respect to the runway;

CObrb are the body coordinates of the aircraft angular velocity relative to the runway; Urn E R 3 is the

moment control; up E R 3 controls the magnitude and direction of engine thrust; and uf E R 3 represents

the aircraft configuration variables such as flaps. Normally not all coordinates of (up, u]) are available

for control. The partition into active controls and configuration variables, respectively, is defined by the

control mode. Finally, g is the acceleration of gravity, vg = Cbr(V r - Wr) are the body coordinates of

the air velocity, and Wr are runway coordinates of wind. The force and moment characteristics of the

aircraft are described by the force and moment functions (fb/, f_n). They are typically multiaxis, highly

coupled, and nonlinear. It should be noted that the state space is not flat, so coordinate patching may be

required for some aircraft maneuvers. A convenient coordinate system is obtained by the introduction

of an intermediate axis system, such as the nominal stability axis, so that

Cbr = CbtCtr (3-2)

where Cbt is parameterized by Euler angles Ctbt in a given sequence, and Ctr is an explicit function of

time specifying the nominal attitude of the aircraft. The state equation in this coordinate patch becomes

?_r _ VT

i;r = CtTrf f (urn, Up,uf, C_bt, v_ , &bt, t) + g63

(_ti = _bt
(3-3)

(dtbti = _bt -= fa(Urn, Up, Uf , C_bt , Vp, _bt, t)

The state space is flat. The force and moment functions (ff, fa) depend explicitly on time by virtue

of the explicit time dependence of Ctr. Three derived functions are useful for control system design

purposes. The first is the moment trim map, which will be defined as a partial inverse of fc_, and

denoted by 9c_:

c ____goalie , Uf, V a t)Um _ bt Up_ _bt, t , d_bt,

(3-4)

a_t'= f_(urn,_up, uf, c_bt,v_, _bt, t)

PRG_ P&GE BLA_ NOT FIL_
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c of the moment control that is required for the generation of a givenso that g c_ computes the value u m

Euler angle acceleration 6_t, whereas all the other relevant variables are held fixed at some given values.

The second is the force function subject to moment trim. It will be denoted by Ff and defined by the

composite

f c_ ..c a • VaFf (_t, Up, u f, Olbt , v_, (_bt, t) = f [g (O_bt, _tp, _f, O_bt,v t , Cebt, t), Up, Uf, Olbt, t, (_bt, t] (3-5)

The third derived function, denoted as F c_, is the force trim subject to moment trim. Here it will be

defined implicitly as the solution to

Ff (&_t, Up, u f, O_bt, v_, dbt, t) -- f_ = 0 (3-6)

The control mode defines how (Up, u f, O_bt ) is to be partitioned into dependent and independent

variables. For example, in the mode in which force is trimmed by means of roll, pitch, and thrust, the

function F c_ outputs the values of these variables for the given force ft e and all the remaining variables.

It may be noted that the selection of the coordinatization of the underlying state space and the

selection of the control mode has a major effect on the form of the state equation. In addition, the

output map h,

y = h(rr, vr, Cbr, Wbrb, Up, u f, wr, Crt) (3-7)

is also defined by a mode--the output mode. Thus, for example, the output may be position rr, or

velocity vr or its spherical or polar coordinates; or it may be the relative air velocity v_, or perhaps

aircraft attitude, Cbr, or something else. Many output modes are of practical interest. The three types

of modes, namely the mode that defines the coordinate patch, the mode that defines the flow of the

control action through the system, and the mode that defines the output function, will be considered as

components of a three-dimensional mode, which will be called the operation mode. Clearly, there are

many values of the operation mode, and for each such mode there is a local state space model of the

controlled process. The (possibly) multiaxis (multi-input multi-output) models have the following form.

fi:l = fl (Xl, x2, p)

_2 = f2(xl,x2,z3,z4, u,p)
5:3 = x4 (3-8)

X4 : f4 (Xl, X2, X3, X4, U, p)

y:Xl

where xi, u E R m, and p E R k is a parameter, which is in general a given function of time. The state

space is flat. The variables have been sorted out as follows.

(1) fl is invertible with respect to x2,

x2 = 91(Xl, :i:1, p)

fl[xl,Yl(Xl,iCl,P),P] = Xl
(3 -9)

(2) ]'4 is invertible with respect to the moment control variable u. The moment trim map g a in

equation (3-4) will be denoted by

u -- g4 (Zl, x2, x3, z4, u2, P) (3-10)
f4[xl, x2, x3, x4, g4 (Xl, x2, x3, x4, u2, P), P] ----u2



=

where u2 is the desired moment 5:4. It may be considered as the new control variable.

(3) F2 is the force function subject to moment trim.

F2(Xl,X2,X3,X4, u2,P) = f2[xl,x2,x3, x4,94(Xl,X2,X3,X4, u2,P),P] (3-11)

This is Ff in equation (3-5). The functions 94 and F2 may be used to simplify the system in

equation (3-8) as follows.

Xl = fl(Xl, X2, p)

:/;2 = F2(Xl, x2, x3, x4, u2,p)

5:3 = x4 (3-12)

X4 = U2

Y=Xl

In addition, we assume that F 2 is invertible with respect to x3. This partial inverse will be denoted by

x3 = g2 (Xl, :/:2, Ul, x4, u2, P) (3-13)
F2[xl,x2,92(Xl,X2,ul,x4, u2,P),X4,u2,p] = u 1

where Ul is interpreted as the desired acceleration :i:2.

(4) The output y is Xl, which will be interpreted as the generalized position of the aircraft, and x2

and _2 as generalized velocity and acceleration, respectively.

The block diagram of the model is shown in figure 2. The presence of feed-forward is an indication

of the presence of zero dynamics. If F2 is independent of u2 and x4, then there is no feed-forward and

no zero dynamics. This form will be referred to as pure feedback. If the model is in the pure feedback

form, then the guidance trajectory can be obtained by inversion as follows. Suppose that the output

y and its four time derivatives are given as functions of time, as are the parameter and its three time

derivatives:

Then, let

and obtain x_3] by computing

p[3] = (p(O),p(1),p(2),p(3))

(3-14)

x_4] =y!4] (3-15)

X2 = gl(Xl, X[ 1),p) (3-16)

P

F2

Figure 2. Local model of the controlled process.



and three of its time derivatives; then obtain x_ 2] by computing, with nulled-out zero dynamics,

x3=g2(xl,z2,x ,O,O,p)

and its two time derivatives, so that

(3-17)

(3-18)

u = g4(zl, x2, z3, xa, u2, p)

The resulting x = (Xl, x2, x3, x4) state and control u are then taken as the guidance state and control,

x ° -- x (3-19)
_Z0 ___--U

The algorithm outlined above will be denoted as .TO. In practice .TO is rather complicated. The

basic force and moment functions (./'bY,f/n) in equation (3-1) require many lines of code to implement.

Many functions are involved--not only elementary functions such as sums, products, exponentials,

and roots, but also multivariable polynomials, vector cross products, direction cosine matrices, and

others. The functions are deeply nested in the sense of function-of-function evaluations. Furthermore,

the transformation of (f[, f_n) into (fl, ]'2, ]'4) in equation (3-8) for a given operating mode requires

further nonlinear computations such as the extraction of Euler angles from direction cosine matrices,

the conversion of Cartesian coordinates into spherical, and other computations. Then it is necessary to

obtain the inverses (gl, g2, g4), and, finally, pass several time derivatives through them. The coding of

.T o is very error prone. However, the application of dynamic forms as described in reference 7 simplifies

the construction and coding of .7 o from (fl, f_n) to the level at which the inverison approach becomes

quite tractable and error free. In the remainder of this report we assume that .To is available.

Next, suppose that zero dynamics are present. Let the acceleration error be defined as follows:

¢ = F2(xl,x ,x3,z4, u2,p) - (3-20)

For the pure feedback solution the error in the command due to the ignored zero dynamics is then

¢0= °, p)_ (3-21)

A simple, practical way to control the effects of this error, if the zeros are weak, is to close a

loop around it by means of a regulator as shown in figure 3. The guidance regulator (Greg) provides

stable tracking. The plant model state and control are taken as the guidance command (x g, ug), which

is executable in the sense that it is a stable solution of the system (eq. (3-8)). The guidance command

serves as input to the real plant regulator (Preg), which closes the loop on the errors between xg and

the (estimated) real plant state x p. In many practical cases this simple scheme works well. In the

present report we are interested in cases in which the maneuvers are aggressive enough relative to the

zero dynamics for this simple approach to be inadequate. The following example provides a simple

illustration of such a case.
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p[3], yc[4] --

r

Guidance generator

x 0

,o [Z

UO

xg

Xe
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i xg _

4-- Disturb

Plant i

_P

I

Preg
i

,!

I

ug _ -- uP-_ -----J ''1_ yp

Figure 3. Structure of the guidance generator based on (z 0, u0).

Linear Case

Consider a linear case of the system in equation (3-8):

:_1 = X2

:c2 = f2 = A21x1 + A22x2 + A23x3 + A24x4 + A25u + A26P

x3 = x4

x4 = f4 = A41xl + A42x2 + A43x3 + A44x4 + A45u + A46P

y=xl

(3-22)

We assume that A45 is not singular, and change control coordinates from u to u2 (see eq. (3-10)):

u = 94(x, u2, p) = A4_(u2 - A41xl - A42x2 - A43x3 - A44x4 - A46P) (3-23)

Then the state equation in new coordinates becomes

571 : X 2

5c2 = -P2 = ClXl -}-C2x2 -t- 63z3 -t- C4x4 + C5u2 + C6p

x3 : x4

5:4 = u2

(3-24)

where

C5 = A25A42

C i = A2i - C5A4i (3-25)

where 1 _< i _< 6 and i -¢ 5, and where u2, the commanded angular acceleration, is the new directly

accessible control variable. Equation (3-24) is the linear version of equation (3-12).

:_2):

Next, assuming nonsingular C3, the force trim map is given by the following (ul is the commanded

x3 = 92 = C31(Ul - ClXl - 62x2 - 64x4 - C5u2 - C6p) (3-26)

!i



The pure feedback solution (x 0, u 0) defined by equations (3-15) through (3-19) is given by

X? -= Yc

xO = Yc

x 0 = C31(Yc (2) - C2Yc (1) - Cly! 0) - C6p (0)) (3-27)

x 0 = C31(yc (3) - C2y; 2) - Cly; 1) - C6p(1))

u 0 = C31(yc (4) - C2Yc(3) - ClYc (2) - C6p(2))

The corresponding acceleration error (eq. (3-21)) is

¢0 = C4C{I(Y (3) - C2y_ 2) - Cly(c 1) - C6p (1)) + C5C3-1(Y! 4) - C2g(_ 3) - ClY(_ 2) - C6p (2)) (3-28)

Note that ¢0 is continuous for small C4 and C5, and _b0 = 0 if C4 and 6"5 are both zero. We turn next

to a numerical example.

Constant Linear Example - Part I

Suppose that the system (eq. (3-22)) is scalar, xi C R 1, x C R 4, and

(f2) (0.000-0.100 32.200 0.000--3.220 10.000"_ (i)f4 = 0.000 -0.020 --1.000 -2.000 1.000 -0.100J (3-29)

In our interpretation, one radian in xa generates one g acceleration 5:2, and -0.19 is generated per unit

of control u. After the inversion (eq. (3-10)), the force function in equation (3-11) becomes

F2(x, u2,p) = (0.000 -0.164 28.980 -6.440 -3.220 9.678) (3-30)

There are transmission zeros: translational acceleration :i:2 is affected by angular acceleration

command u2 at -0. i 9/rad/sec 2.

We wish to transfer the system from hover at y = 0 to hover at y = 1,000 ft in 14 sec (from t = 4

to t = 18) as shown in figure 4, while changing the configuration parameter p from 0 to 1 and back to

0 as shown in the figure. The complete commanded maneuver Yc is composed of nine segments. Each

segment is a 9-degree polynomial in t with continuous splices to order 4. The pure feedback solution

(x °, u O) and the resulting acceleration error

¢o: F2(x°, 0p) _ (3-31)

12



causedby thezerodynamicsareshownin figure 5. Errorsof 9 ft/sec2 areproduced.We try to regulate
the error by meansof the plant model and regulator(Greg) structureshownin figure 3. A realistic
regulatorgain is

K=(0.0883 0.1354 6.8376 3.4005) (3-32)

It places the two closedqoop pole pairs at 0.8 and 2 rad/sec, both with 0.5 damping. The resulting

closed-loop error x e response is shown in figure 6. The acceleration error produced by the zero dynamics

results, in this case, in a tracking error x_ that reaches 11 ft. Furthermore, the regulator amplifies the

closed-loop acceleration error ¢. We consider next a way for reducing the tracking error by providing

a better guidance command (x c, uC). We will obtain an order-of-magnitude improvement (see fig. 13).
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Figure 4. Commanded evolution of the output y and parameter p.
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4 Local Zero Dynamics

Let us return to the general case of the multiaxis system in equation (3-12). Suppose that in order

to reduce the error ¢0 defined by equation (3-21) we introduce perturbations (711, r/2, r/3) along the pure

feedback solution (x °, u°). Then equation (3-20) becomes

(4-1)_b "- F2(xOl,xO2, xO3 -t- r/l, x04 -t- r/2, u20 + r/3, P)- X02

or, using equation (3-21),

¢ F2(Xl 0, 0 0 , x0 + u20 + r/3,P)- F2(xOl,x2,x3, 2,P) + _)0= x2,x3+?71 r/2, 0 0 x 0,u0

We assume that for small perturbations, the linear part dominates, so that (approximately)

(4-2)

_b = C3r/1 --I-C4r/2 + C5r/3 + _bo (4-3)

OF,
c3= 

OF.
C4 = _4 (4-4)

where the Jacobian matrices

are evaluated along (:c 0, u°). We note that the Jacobian matrices can be computed directly from (f2, f4)

in equation (3-8):

C5:-_u (-_u) -1

(4-5)

:_zj-C5_zj, j:3,4cj

If for each t in our interval of interest, T= [t], t2], we select the perturbations (r/l, 772, r/a) so that

Ca(t)r/1 (t) + C4(t)r/2(t) + Cs(t)r/a(t) = -"/Co(t) (4-6)

for 0 < '7 _< 1, then we have improvement at each point of T:

¢(t) = (1 - '7)_0(t) (4-7)

The corresponding improved trajectory (x 1, u_) is then

xl = x °

x I = x o

x_ = x °

x I = xo

u_ = u °

+ 711

+ r/2

+ 773

(4-8)
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and the improved error (eq. (3-20)) is

¢1 = F2(xl, ul,P) - _cO (4-9)

If the perturbations were free, we could have moved down in many ways, but of course the available

perturbations are not free: according to equation (3-12) we have nonholonomic constraints, namely,

¢/1 ---- r]2

//2= 7/3

so that, in fact, equation (4-6) is a differential equation,

cs(t)_ + c4(t)_ + c3(t),7 = --y¢(t)

where r/-- r/1. If C5 is nonsingular, then another form of this equation is given by

/_ + A4(t)//+ A3(t)r/= B2(t)[-'y_b(t)]

=(0A,A,)
or, equivalently,

where, of course, B2 = C51, A4 = B2C4, and A3 = B2C3, that is,

B2 =-_u4(_u2)-I

Aj--B2_xj-_, j--3,4

(4-1o)

(4-11)

(4-12)

(4-13)

(4-14)

We will refer to all three forms of the differential equation as the local zero dynamics (of the system

in eq. (3-12)). We seek the stable, "steady state" solution of the local zero dynamics. We develop

methods for the computation of such solutions in the next two sections, first using the time domain

approach and then using the frequency domain approach. Assuming that the steady state solution can

be computed, the proposed algorithm for the computation of the improved guidance command (x c, u_)

can be summarized as follows.

Step 1. Compute the pure feedback solution (x 0, u °) and the error ¢0.

Step 2. Compute the Jacobian matrices C3, C4, and C5 along (x 0, u°).

Step 3. Compute the steady state solution of the local zero dynamics.

Step 4. Update the trajectory and compute the improved error ¢.

[X c ttc'_Step 5. Repeat steps 2--4 until I_l becomes acceptable; the result is _ , 2J.

16



If the system (eq. (3-8)) is linear, a choice of -y = 1 will produce the result in one iteration.

Otherwise, 7 must be small enough for the linear part of the perturbation to be dominant. The effect of

nonlinearity is to increase the number of required iterations.

The differential equation (4-11) is closely related to the Isidori zero dynamics (ref. 8), which for

the system (eq. (3-12)) are defined by the generally nonlinear differential equation

F2( 1, x2, = (4-15)

Let z(t) be its stable, steady state solution. The linear part of the perturbation along z(t) is given

by

C5(t)/_ + C4(tfi) + Ca(t)r/= ¢(t) (4-16)

where the Jacobian matrices Ci are evaluated along z(t). Thus, the homogeneous parts of equations (4-I 1)

and (4-16) are the same for perturbations along z(t), but unless F2 is linear the Jacobian matrices will

be different in the early stages of our iteration.

There are three approaches to solving the differential equation (4-15).

(1) In reference 3 the approach is to represent the command Yc and the parameter p as outputs

of a relaxing exosystem, and then to design a regulator that forces the combined system to satisfy

equation (4-15) asymptotically.

(2) In reference 6 the approach is to solve equation (4-15) by means of a Picard-like iteration.

(3) Our approach is to solve equation (4-15) by replacing it with a sequence of linear problems;

each linear problem is solved by means of a Picard-like iteration (ref. 6). The advantage of this approach

is the freedom provided by 7: it controls the intensity of the forcing function q@.

Approaches (2) and (3) are distinct only for nonlinear systems. For linear systems they are the

same.

The remaining problem is to develop a procedure to carry out step 3 in the above algorithm. For

the case of our numerical example in equation (3-29), this requires finding the particular solution of the

following differential equation.

- 3.220/) - 6.440//+ 28.980r/= -¢0 (4-17)

Its eigenvalues (A1, A2) = (-4.162, 2.162). There is a nonminimum phase zero at 2.162. In order to

reduce the errors shown in figures 5 and 6, we need the steady state solution of this equation. That type

of problem is solved next. We follow the procedure given in reference 6.
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5 Time Domain Solution of the Local Zero Dynamics

Consider the constant linear system

_c = Ax + Bu (5-1)

where x E R n, u C R TM, and A has no eigenvalues on the jw axis. We are not interested in the usual

initial value problem in which x(0) and u are given and the problem is to find the solution x(t). Instead,

we want to compute the particular solution Xp for a given u. For example, what is the constant x for a

given constant u, or what is the amplitude and phase of x for a given sinusoidal u, or what is x for an

arbitrary given u? The answers to the first two questions are easy:

Xp(jw) = (jwI- A) -1 Bu(jw) (5-2)

The third question is addressed in the rest of this section and in the next section.

Constant Linear Systems

Assume for simplicity that A has distinct eigenvalues. Change coordinates

x=Pz

to diagonalize A

so that

(5-3)

p- 1AP = A (5-4)

= Az + Fu (5-5)

where F = p-lB. The transition matrix for this system, which is diagonal, we separate into stable and

unstable parts, _-(t) and _+(t), respectively:

_(t) = _At= _-(t) + _+(t)

The bilateral (ref. 6) transition matrix for equation (5-5) is then given by

_p±(t) = _-(t)U(t) - _+ (t)U(-t)

where U is the unit step function. The particular solution is given by the convolution

(5-6)

(5-7)

(5-8)zv(t ) = f+y _±(t- r)ru(r)dr

That zp is a solution of equation (5-5) can be checked by differentiation. Note that _-(0)+_+ (0) =

I, and that _- and _+ cannot have nonzero entries in the same row.

By transforming back to the natural coordinates, we obtain the bilateral transition matrix

¢+(t) : P_±(t)P -1 (5-9)



andthe bilateral input-outputimpulseresponse

hi(t) = p_+(t)P-1B (5-1o)

The particular solution to equation (5-1) is given by the convolution

f'-cc h+(t T)_t(T)dTXp(t) = oo --

or, equivalently, the computationally more convenient form

_ h+(-a)u(t + a)da

(5-11)

(5-12)

In the present report we are interested in the second-order system given by equation (4-13).

Application of equation (5-12) with u = -'7¢ produces the following particular solution:

( r/1 (/;) --"/[/2r/2(t)) = h+ (-_)¢(t + a)&r
(5-13)

For the scalar case,

with AI<O<A2

so that

and

# + a4//+ a3r/= b2" (-7¢) (5-14)

A=( 0 1 ) B=(0) (5-15)-a3 -a4 ' b2

(1 1) p-1 1 ( A2 -1) (5-16)P= A1 A2 ' - A2-A1 -A1 1

0) (0 0)_o-(t)= 0 0 ' _+(t)= 0 eA2t (5-17)

b3 1 1 e,X2tu(_t)]hi(t)- t2 ll[(A1)e'htu(t)+(A2)
(5-18)

The first component of hi(t),

b2

hl (t) -- Xl[e_ltU(t) -k- eA2tu(-t)] (5-19)

is shown in figure 7 for the case of equation (4-17), where (A1,A2) = (-4.162,2.162). Note the

rapid roll-off on either side of t = 0. One may expect that, for reasonable forcing functions -'7¢,

the convolution may be restricted to, say, only four times the slowest time constant, which in the case

shown is approximately 2 sec.
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Figure 7. Numerical example of h:_(t).

If we define

#l(t) =fioc eXi(t-r)u(T)dT

re(t) = I+°°

then the particular solution of equation (5-14) is given by

r/(t) ---- _1 [/Zl(t) -F #2(t)]

?)(t) = _1 [Al#l(t) -F/_2#2(t)]

/)(t) = -a3r/(t) - a4//(t) - b27¢(t)

(5-20)

(5-21)

In order to explore this solution, suppose that we have a table of integrals so that for a given ¢,

Then

feAt¢(t)dt = k_(A,t), _(A,t) = eAt¢(t) (5-22)

(5-23)

If ¢(t) = 1, then k_(A,t) = cA/A, and

-1
#1 =

I

#2 = _2

so that the particular solution is, as expected from equation (5-14),

= -- a3

¢1=0

_2 =0

(5-24)

(5-25)
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If _(t) = sin(wt), then

#1 = e_lt_(-A1, t) = _1-_2 [-Al_sin(_t) -wcos(wt)]

#2 = -_2t_(-_2, t) = _-_-j_[-_2 sin(_t) - _ cos(_t)]

so that

where

r/= -Ta sin(wt + 0)

(5-26)

(5-27)

b2 (5-28)
aeJO = --w 2 + jwa4 + a3

Discontinuities in _b or its derivatives spawn leading (noncausal) and trailing transients. For exam-

ple, consider a pulse,

0, t < tl
_(t) = _0(t), tl < t < t2 (5-29)

O, t2 < t

Then

and

0, t<tl
#1 = e'_lt[ff20(-A1,t) - _o(-Al,tl)], tl < t < t2

eilt[k_O(-Al,t2) - _O(-Al,tl)], t2 < t

(5-3o)

{ e'k2t[_o(-A2,t2) - q20(-A2,tl)], t < t 1
tt2 = eA2t[_o(-A2,t2) _O(-A2,t)], tl < t < t2 (5-31)

O, t2 < t

That is, there is a pair of transients at either end of the pulse. One member of the pair leads the

discontinuity, the other trails it. For example, suppose that

0, t<0 _2_-_b(t)---- 1-cos(wt), 0<t<t2--_ (5-32)

0, t 2 < t

One way to get the particular solution is to splice three segments of particular solutions,

0, t<O
77(t) = ao - acos(wt + O), 0<t<t2 (5-33)

0, t 2 < t

where a0 = -b27/a3, and a and 0 are given by equation (5-28). But that simple approach produces

undesirable discontinuities in r/and 7} at t = 0 and t = t2. On the other hand, the particular solution

-b27 [#l(t) + #2(t)] (5-34)
v(t) - A2- _1

and its derivative are everywhere continuous. The leading and trailing transients satisfy the homogeneous

part

/') + a4//+ a3r/= 0 (5-35)

These transients prepare the system state x and control u for the approaching discontinuity, and the

transients are invisible at the system output y. Thus, the bilateral solution has definite advantages.

- 22



Numerical Solution

Numerical solutions of the convolution integrals are needed in practical applications. The integrals

in equation (5-20) may be computed approximately as follows.

#1 = e_xt f_-_ e-_lr¢(7)d7 = E ec rt-nTn=O Jt-nT-T e--Alr_b(T) d_" _

_ - 1-e_'1T EN_AI(I_eA1TN) n=O(eA1T)n[¢(t- nT- T) + _b(t- nT)]/2

(5-36)

#2 = eA2t f_o e-A2wflZ(T)dT = En=OO°Jt+nT+Trt+nTe-A2r_b(T)dT ,_

* 1-e -_2T x--,N te-A2T_nr.j,t t T) nT)]/2
#2 -- A2(I_e-)_2TN) Z-_n=0\ / t_ + nT + + ¢(t +

The approximations have been normalized to give correct results for ¢ = 1. Consequently, the approx-

imate solution to our problem is given by

(5-37)

r/_ = -a3T/_ - a4r/_ - b2,_¢(t )

For example, consider yet again the system discussed previously,

(a3,a4, b)=(-9.000 2.000 0.311)

(A1,A2)=(-4.162 2.162)
(5-38)

Assume that the forcing function is

(-7_) = 20sin(a_t + 7r/4)

so that the exact solution is easily obtained as the particular solution:

-0.311

_(Jw) = (-w 2 + j_v2 - 9) _b(jw)

(5-39)

(5 -40)

We take the sampling period T = 0.05 sec and provide a look-ahead/look-back of N = 40 samples

(4-2 sec). The approximate computation r/*(0) is compared to the exact r/i0 ) for several frequencies. A

frequency scan from [0, 10] rad/sec is shown figure 8. The approximate and exact solutions are practically

indistinguishable in the figure. Hence this type of algorithm is effective for constant systems. We now

turn to the time-varying case.
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Figure 8. Exact and approximate solutions.

Linear Time-Varying Systems

In general, the local zero dynamics given by equation (4-13) may have time-varying coefficients.

Therefore, consider the following model

:_ = [Ao + 5A(t)]x + B(t)u(t) (5-41)

where x E R n, u E R m, and 5A and B are some reasonable functions of time. The iteration in refer-

ence 6, restricted to linear systems, will converge to the particular solution if the following conditions

hold:

(1) A 0 has no eigenvalues on the j_v axis; ¢±(t) is the bilateral solution for the system

5: = Aox (5-42)

and let the norm of ¢± be

11¢±11: _ max f__ ICfk(t)[dt (5-43)
k c_

3

(2) There is a constant K so that for all -cx) < t < c,o

maxI a j(t)l _<_K
_,3

(5-44)

(3) The product

KII¢±tl < 1 (5-45)
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The solution is constructedby meansof a Picard-likeiteration:

zo(t) -- o

Xl(t ) ---_ foo ¢-t-(t_ 7)B(T)u(T)dT

Xm+l(t) : xl(t ) + f_°°oo ¢-I-(t -- T)_A(T)Xm(T)dT

(5-46)

The difference at each iteration

era(t) = Xm+l(t) - Xm(t) = f_°°oo ¢+(t - T)SA(T)ern-l(T)d7

maxt Ilem(t)ll _<maxt Ilxl (t)ll(KIl¢±ll) m

so that

(5 -47)

Xp(t) = lim Xm(t) (5-48)
m--.--+o(3

In actual applications, it may be advantageous to change coordinates. For example, suppose that

A0 has only real and distinct eigenvalues, and that P diagonalizes it. Then

1

11 ±11= E - Z (5 -49)

that is, the sum of time constants, and condition (3) becomes

K _ Ti < 1 (5-50)

In the scalar case of equation (4-12), separate the time variation as follows

/? + [a04 + 5a4(t)]il + [a03 + 5a3(t)]Tl = -b2(t)'y¢(t) (5-51)

If the eigenvalues of A0 satisfy A1 < 0 < A2, and if for -oo < t <

max[15a3(t)l, 15a4(t)l](T1 + T2) < 1 (5-52)

then the iteration will converge to the particular solution.

In summary, if the coefficients of the local zero dynamics vary in time sufficiently little relative to

their average value, then the iteration will produce the particular solution, and so step 3 in our algorithm

can be carried out. The overall algorithm is thus complete. The time domain approach seems to require

a lot of bookkeeping with respect to the eigenvalue pattern. The frequency domain approach discussed

next is simpler, especially for multiaxes systems.
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6 Frequency Domain Solution of the Local Zero Dynamics

Consider again the local zero dynamics (eq. (4-11))

cs(t)# + c4(t) + c3(t) = (6-1)

We are interested in obtaining the particular solution. In the preceding section, we took the time domain

approach, which has some drawbacks. The need to distinguish between root patterns is a nuisance.

Also, we would like to consider cases where C5 drifts through zero, which leads to changing order

of the differential equation. The frequency domain approach, discussed next, is in some ways much

simpler to implement.

Let us rewrite equation (6-1) as a sum of constant and time-varying linear operators

(Lo + 5L)_7 = -,_b (6-2)

where D = d/dt and

Lo=coD +coD+co

5L = 5C5(t)D 2 + 5C4(t)D + 5C3(t)

Let r/0 be the solution of the time invariant part

r/O = L01(-'7¢)

and change coordinates so that r/= r/0 + 771. Then

(6-3)

(6-4)

(Lo + 6L)(_o + _1) = --")'_9 (6-5)

That is,

(Lo + 5L)_71 = -SLr]o (6-6)

This is the old equation (6-2) with a new forcing term, which is the error caused by r/0. After i

iterations, the correction is

77i+ 1 : -- LO 15Lrl i (6-7)

If ]ILo15L[I < 1, then the iterations

77= _ r/i (6-8)

converge to the solution of equation (6-2) and hence of the original equation (6-1). Consider next the

construction of LO 1.

The Fourier transform of equation (6-4) is

rlo(jw) = Go(jw)[-'7¢(jw)] (6-9)

Go(jw) = [C°(jw) 2 + C°jw + C°] -I (6-10)

where the transfer function
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The forcing function %b(t) is available only at sampling points, _b(nT). The Shannon reconstruction

(ref. 9), with sinc(x) = sin(x)/x,

--}- (X)

¢(t) = T _ ¢(nT)sinc[ws(t- nT)/2]/T (6-11)
--0(3

converts the sequence ¢(nT) into an analog signal, ¢(t), that is band-limited to ]wl < _os/2 = 7r/T.

The Fourier transform of sinc(cVst/2)/T is

1, t_1_ _/2S(j_) = O, I_l > _/2

Hence, the transform of the output of Go with input sinc(wst/2)/T is

(6-12)

go(jw) = Go(jw)S(jco) (6-13)

and its inverse is

J-a_s/2r+_°s/2Go(jw)eJC°t dwgo(t) =

or, equivalently, because of symmetries,

(6-14)

1 cw_/2

J0 (G0x coswt - Goy sin wt)dw (6-15)go(t) = -_

where Gox and Goy are, respectively, the real and imaginary parts of Go. The integral is then computed

numerically (we used an IMSL, Inc., routine (ref. 10)) for 2Ns + 1 values of t to obtain the sequence

(go(kT), -G < k <__Ns} (6-16)

Then, finally, the frequency domain approximation z]_ to the particular solution of equation (6-4) is

given by the following discrete convolution:

N_

r]W(nT) = -TT _ ¢[(n- k)T)]go(kT)

k=-N_

(6-17)

The derivatives _)w and iiw are computed similarly by means of equation (6-17), except that g0

is replaced by 91 and 92, which are the inverse transforms of Gl(fiz) = jwGo(jw) and G2(jw) =

(jw)2Go(jw), respectively.

The potential aliasing problem arising from the multiplication in forming _L_Ti may be avoided by

means of a noncausal filter GI, which provides roll-off without phase lag. In that case the combined
transfer function

Go(jaJ ) = [C°(ja_) 2 + C°jw + C°]-lG f(jw) (6-18)

where Gy(s) is symmetric about both real and imaginary axes. For example, if, as before, (c5, c4, c3) =

(-3.22,-6.44, 28.98), we may choose

Go(j_) = [-3.22(j_) 2 - 6.44(jw) + 28.98]-1[1 + (w/8)4] -1 (6-19)
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The responsego of the (unstable) Go to sinc(_st/2)/T is shown in figure 9. Also shown is

the corresponding bilateral impulse response h_: (see fig. 7). It may be noted that the two curves are

practically indistinguishable, which is not surprising since h:_(t) and Go(j_) (without the filter) are a

Fourier transform pair.

.05

0
-5 0

Time (see)

Figure 9. Comparison of h_: with the response 90 of Go to sinc(wst/2)/T.

Thus we have two effective ways for computing the steady state solution of the local zero dynamics.

One solves the problem in time domain producing the approximation r/*; the other solves the problem

in frequency domain producing the approximation r/"_.
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7 Outline of the Proposed Algorithm

An approach has been presented in this report for the computation of the guidance commands

(x e, u e) that guide the system along Yc. The system may be multiaxis, time-varying, and nonlinear, but

of the following type (see eq. (3-8))

:_1 = fl(xl,x2, p)

:/:2 = f2(xl, x2, x3, x4, u, p)

X3 : X4

5:4 : f4(xl, x2, x3, X4, u,p)

y=Xl

(7-1)

where xi, u E R m and p E R k is a time-dependent parameter. This is a realistic model of an aircraft.

The algorithm consists of the following steps.

Step 1. Change the control variable to u2 = f4(xl, x2, x3, x4, u, p) SO that the model becomes

system,

Step 2.

5:1 = fl(Xl,X2,p)

:k2 = F2(XI, X2, X3, X4, u2,p)

5:3 = X4

5:4 = U2

Y=Xl

(7-2)

Initialize (i = 0) the following iteration by inverting the pure feedback part of the

x_l = Yc

x_: g_(x_,_, p!
x_= g2(xl,x_,_, 0,0,p)
x_: _
_ = _

Step 3. Compute the error in 5:2 caused by the neglected dynamics:

(7-3)

¢_ F_(x_,x_,x_,_ _ _o: X4, U2, P) --

Skip Steps 4-6 if I_i] is small enough.

Step 4. Compute the Jacobian matrices C_, C_, and C_ along (x i, u_).

Step 5. Compute iteratively the particular solution of the local zero dynamics,

(7-4)

(7-5)



Step 6. Update trajectory (x i, ui2)

xi+l

xl+l = Xl0

=x_+_

•_+1= x_+

Step 7. Compute the control in natural coordinates

(7-6)

u' = ui,p) (7-7)

The result is the guidance trajectory (x c, uc), which includes the effects of zero dynamics. For

linear systems one iteration with 7 = 1 will suffice. For nonlinear systems, 7 is chosen small enough to

ensure the dominance of the linear approximation. If many iterations are needed in a given problem, then
xi "the accumulation of small errors may make the iterate ( 3, x_l, u_) inconsistent with the nonholonomic

constraints,

= (7-8)

That can be easily rectified by passing each iterate through a noncausal observer for the constraint

(eq. (7-8)).

The resulting structure of the command generator shown in figure 10 is the same as in figure 3,

except that the pure feedback guidance (x °, u°), which does not account for zero dynamics, is replaced

by (x c, uC), which does. We now apply, by way of illustration, the complete algorithm to compute the

guidance command (x c, u c) for several examples.

p[3l, yc[4l --

f
Guidance generator

----7 x c

=

Fc!
!
i

U c

xg

uS

ug

xg x̂P ,

i

I

Preg

!

ug _-- uP'-_

Figure 10. Structure of the guidance generator based

--I

,41-- Disturb

Plant

yP

on(x_,u_).
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8 Examples

In this section we apply the numerical solution of the local zero condition to the linear model

discussed previously and describe the resulting closed-loop behavior. Later in this section, we apply the

proposed guidance method to a time-varying system, and then to a nonlinear system.

Constant Linear Example - Part II

In the first part of this example (see Constant Linear Example - Part I) we have computed and

stored in memory the error ¢0(t) on the time interval [0, 26] at 20 samples per sec. Now we pass this

sequence _bo(nT ) with 7 = 1 through the algorithm (eqs. (5-36) and (5-37)), 81 samples (N = 40) at a

time at each sample, to obtain the corrections (r/*, ¢/*, 7)*). The first panel of figure I1 shows both time

domain r/* and frequency domain r/W (with Ns :- 40) solutions. They are indistinguishable. The next

two panels show the approximations to ¢/and/_, where

¢/**(n) = [r/*(n + 1)- r/*(n- 1)]/(2T)

_**(n) = [//*(n + 1)- f/*(n- 1)]/(2T)
(8-1)

The pairs of curves in the bottom panels are again practically indistinguishable; hence we have

consistency: (//*, #*) are good approximations to the time derivatives of (r/*,//*). It may be noted that

there are leading and trailing transients, such as before t = 4 and after t -----18. That effect is even

more pronounced in figure 12, where improved command z c (solid line) is compared with the original

command x ° that ignores the zero dynamics. In the figure the pure feedback solution is shown dotted.

It is a copy from figures 5 and 6. A noteworthy beneficial effect is that the corrected command is

smaller, smoother, and gentler than x °. The tracking errors are shown in figure 13. They have been

reduced by a factor of 20. Thus, we obtain better tracking by means of gentler commands.
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Figure 11. Numeric solution of the zero dynamics.
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Figure 13. Error response to corrected guidance command.
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Linear Time-Varying Example

The state equation in this example is

0 1 0 0

J0 -0.1 32.2 -i0.18

0 0 0 1

0 0 0 0

X+

The corresponding zero dynamics are given by (see eq. (4-11))

p(t)iO - 10.18_} + 32.2U = -'¢'0

u (8-2)

(8-3)

The root locus for -3.22 _< p _< 3.22 is shown in figure 14. At p = -3.22 there is a saddle, one

root being close to -5 and the other close to +2. As p increases, the stable root goes off to -oc (at

p = 0 there is a drop in order!) and reappears from +co while the unstable root passes through 3. The

roots meet for p = 0.8, resulting in a repeated unstable pair near +6. Then the zero dynamics turn into

an unstable spiral. At p = 3.22, the roots rest at (1.58 4- j2.74).

10

-5

p=3.22

p=-3.22pZoJ

-10
-10 -5 0 5 10

Figure 14. Root locus.

We wish to guide the system along the same trajectory Yc as shown in figure 4, except that the

parameter p is changed as shown in figure 15. The system error response without correcting for zero

dynamics is shown in figure 16, and the system error response with corrections for zero dynamics is

shown in figure 17. It should be noted that an order of magnitude improvement is obtained despite time

variation of the zero dynamics. The corrections were implemented in frequency domain. The following

noncausal transfer function was used to compute _7(t) _.
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Figure 15. Variation of p.
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Figure 16. Error response without corrections.
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Go(jw) = [p(jw) 2 - 10.18(jw) + 32.2]-111 + (w/8)4] -1 (8-4)

where p is locally frozen (see below). The derivative _)(t) a; was computed by means of Gl(jw) =

jwGo(jw). Rapid frequency roll-off without phase lag was provided by the noncausal filter with the

pole pattern shown in figure 18. The filter requires a look-ahead/look-back of 0.5 sec, but since we are

already prepared to look-ahead/look-back 2 sec, the noncausal nature of the filter is not a problem. The

9o(kT),-40 _< k _< 40, needed in the convolution for ry, and gl(kT),-40 < k _< 40, needed for//_,

were computed every fifth sample using the value of p at the beginning of each quintet.

--8

-8

I
I
I

Figure 18. Roll-off filter poles.

Nonlinear Time-Varying Example

The model used next is motivated by the fact that generally the aircraft force and moment generators

stiffen with speed. We multiply the linear force and moment used in the preceding example by a factor

that is quadratic in speed x2 to obtain the following nonlinear state equation.

Xl = x2

:/:2 = f2 = (a21xl %- a22x2 %- a23x3 %-a24x4 %- a25 u %- a26P)[1%- (a27x2) 2]

:_3 = X4

X4 = f4 = (aalxl %- a42x2 %- a43x3 %-a44x4 %- a45 u %- a46P)[1%- (a47x2) 2]

y=xl

(8-5)

The maneuver to be executed is the same as before (fig. 4). With a27 = a47 = 0.01, the multiplying

factor ranges from 1 to 2.5. Figure 19 shows the spectrum (A1, A2) of the zero dynamics with Jacobian

matrices frozen at each sample. Both zeros move out with increasing x2. Also shown are the regulator

gains, varied so that the closed-loop poles of the perturbation model with frozen Jacobian matrices at

each sample remain, as before, at 0.8 and 2 rad/sec, both with 0.5 damping. The tracking errors after

only one iteration ('7 = 1) are shown in figure 20; they are small. It is particularly noteworthy that

the acceleration error of the corrected guidance ¢ (solid line) is an order of magnitude smaller than the

pure feedback error ¢0 (dotted line).
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Figure 19. Variation of zeros and regulator gains.
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Figure 20, Error response of nonlinear system.
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9 Conclusion

An algorithm for computing state trajectories and controls that guide a nonlinear system through

given sequences of control points has been presented. It is assumed that the control point schedule is

known several points in advance. In the algorithm, the control points are linked by polynomial segments.

The first approximation of the guiding state trajectory is obtained by equating the system output with

the polynomial schedule and inverting the pure feedback part of the system. In the presence of zero

dynamics this first approximation will produce acceleration errors. A correction is obtained by means

of the stable, steady state solution of the local zero dynamics. If nonminimum phase zeros are present,

future values of the approximate solution are used. Numerical tests indicate that an order-of-magnitude

reduction in the acceleration error is possible with look-ahead of only four times the time constant of

the unstable zero. Therefore, the control points must be available that much in advance. Usually, this

does not pose a problem in the fully automatic mode of operation of the system, since the higher-level

planner that provides the control point schedule has a much wider horizon than the servosystem being

discussed here. Although a regulation process must always be causal, a guidance process may employ

noncausal computations.
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